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A one-dimensional algorithm for fluid simulation of interpenetrating 
multi-component plasmas, developed earlier for the collisionless case 
[l], is extended to include collisions between species. The finite- 
differenced fluid equations, including collision forces, are coupled with 
the Poisson equation to give time-implicit solutions, which are stable 
and accurate over a wide range of the time scale parameters w,flt and 
v,nt (wp is the plasma frequency, (I, is a typical collision frequency, 
and dt is the time step). In regions where w,flt< 1 and v,dt< 1, elec- 
tron dynamics and space-charge effects are resolved, while in regions 
where w,At$l and/or v,At$l, the ambipolar and/or diffusion 
models are recovered. Results of tests are presented, including ohmic 
heating, shocks with an interface between different fluids, colliding 
plasmas in which a region of interpenetrating fluids is created, and 
plasma shocks with separate electron and ion fluids. 0 1332 Academic 

Press. Inc. 

I. INTRODUCTION 

There is growing interest in fluid-particle hybrid simula- 
tions of plasmas, in which the dense-cold plasma com- 
ponents are treated using fluid models, while the sparse- 
energetic components are represented as particles [2, 31. 
This interest is motivated by the need to model surface 
interactions between an energetic plasma or beam and elec- 
trodes or sheaths, with density ratios of several orders of 
magnitude. Such interactions play a role, for example, in 
electron and ion sources, diode closure, probe theory, and 
plasma processing of surfaces. The fluid algorithms used in 
such simulations must satisfy the following requirements: 

(a) They must represent multiple interpenetrating 
fluids, consisting of electrons, ions and neutral fluids, inter- 
acting with each other via the electric field and collision 
forces. 

(b) Since a given fluid component generally does not 
occupy the entire system, fluid-vacuum boundaries occur 
for each component. Such fluid-vacuum boundaries are 
found in interface regions between two fluid species, or 
between fluid and particle components. The fluid transport 
algorithm must give physically acceptable behavior at such 
boundaries. 

(c) Electron inertia effects occurring at the time scale of 
the simulations must be included. This requires a time- 
implicit evaluation of the electric field giving stable and 
accurate numerical solutions for electron densities corre- 
sponding to a wide range of the time scale parameter op d t. 
Here, w,, = (4rre2n&,)“2 is the plasma frequency, n, is the 
electron density, e is the magnitude of the electron charge, 
m, is the electron mass, and d t is the time step. In low- 
density regions, where or, At < 1, electron dynamics and 
space-charge effects must be resolved, while in high-density 
regions, where or, At % 1, the numerical solution must give 
quasi-neutrality with an ambipolar electric field. In this 
limit of cup At % 1, low frequency phenomena such as ion 
acoustic waves must still be correctly reproduced. 

(d) The collisional coupling between fluid components 
must be represented over a wide range of the time scale 
parameter v, At, where v, denotes any of the collision 
frequencies between fluid components. For v, At 6 1, the 
effect of friction on the dynamics of interpenetrating fluids 
must be modeled accurately, and for v, At $1, the solution 
must remain stable and reduce to Ohm’s law (electron 
current proportional to electric field in uniform plasma) or 
to the diffusion model (momentum flux proportional to 
pressure gradient, hence an/at a a2n/ax2 for neutral fluids) 
as appropriate. This requires simultaneous time-implicit 
solution of the collision forces between all fluid components 
present at a point [4]. 

A one-dimensional algorithm which meets these 
requirements for collisionless fluids was developed earlier 
[l]. In the present paper we extend this algorithm to 
include collision forces. 

The multi-fluid formulation of Braginskii [ 51 is used with 
a set of fluid equations for each species, including electrons, 
ions, and neutral species. Dimensionless units are used with 
lengths measured in units of a characteristic length, Lo. 
Velocity, particle mass, and temperature are measured in 
units of uO, m,, To, respectively, which are related by 
00 = (Tolmo) . 1’2 Time is measured in units of 1,/u,. Particle 
density is in units of the characteristic density no, electric 
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field in units of E0 = (47~2, T,)‘j2, and charge in units of the 
magnitude of the electron charge e. 

The continuity and momentum equations for species s are 

an, a 
at+% (ndG)=O 

and 

with velocity source term 

Here n,, u,, T, are the normalized number density, velocity, 
and temperature of fluid species s, E is the normalized 
electric field, qs and m, are the normalized charge and 
mass of species s and mssr = m,m,~/(m, + m,,). The quantity 
Qp = (47cnoe2/mo)1’2 &/v, is the dimensionless plasma 
frequency and is a measure of space charge effects. Colli- 
sions between species s and s’ are defined by the collision 
frequencies v,, = tl,,, Cssrnss, where ~1,~ denotes numerical 
constants of order unity and C,,, denotes symmetric coef- 
ficients which depend on the temperature. Both ass, and C,,. 
depend on the interaction force between particles during 
collisions (e.g., inverse square law for Coulomb collisions). 
The form of the coefficients C,,, is discussed in Appendix A. 
The electric field is obtained from the Poisson equation, 
which in these units takes the form 

(4) 

The energy equation for species, s, is 

where the temperature source, ps, is given by 

The coefficient $ in Eq. (6) is appropriate for a mono- 
atomic ideal gas with a ratio of specific heats, y = 3, 

B,,, = 3m,,~ Cssr/(ms + m,.), and K, denotes the flux limits 
heat conductivity as discussed in Appendix A. 

An algorithm for the solution of the continuity ar 
momentum equations, Eqs. (l)-(3), coupled with tl 
Poisson equation, Eq. (4), is presented in Section II. A on 
dimensional uniform Eulerian mesh is considered with rnes 
size Ax. This algorithm is an extension of Scheme 3 ( 
Ref. [ 1 ] to include collision forces. The numerical solutic 
of the energy equations, Eqs. (5), (6) is treated in Se 
tion III. A code implementing the algorithms of Sections 
and III, with an arbitrary number of species has bee 
written and tested on problems involving interactic 
between several fluids. These tests, presented in Section I’ 
include ohmic heating, shocks with an interface betwee 
separate fluids, colliding plasmas in which a region of inte 
penetrating fluids is created, and plasma shocks in whit 
electrons and ions are represented by separate fluids. Tl 
collision coefficients C,,, and heat conductivities I 
are discussed in Appendix A, and Appendix B defines tt 
transport algorithm used in the numerical tests. 

The code implementing these algorithms also allows fc 
creation and deletion of particles in regions of low co11 
sionality [2]. These particles are followed using particle-i 
cell techniques, which include scatter and drag due to co11 
sions with the fluids. These hybrid simulations, includir 
both fluids and particles will be described in a future pape 
but even without particles, this code follows the separa 
dynamics of the components of a mixture, rather than COI 

sidering the mixture as a single fluid as typically done 
fluid plasma codes. This more detailed representation is pa 
ticularily important for the treatment of electrons and 
interfaces between fluids, where interpenetration of sever 
ion or neutral species can occur. 

II. DENSITY, MOMENTUM, 
AND ELECTRIC FIELD 

The numerical solution of the continuity and momentu 
equations, Eqs. ( 1 )-( 3), coupled with the time-implicit sol 
tion of the Poisson equation, Eq. (4), were studied 
Ref. [ 1 ] for the collisionless case. Three algorithms, ide 
titied as Schemes 1, 2, and 3, were examined. In Scheme 
all quantities, i.e., density, momentum, temperatur 
velocity, and electric field, are defined at cell centers ar 
Phoenical flux corrected transport is used [ 11. This alg 
rithm gives good results at fluid-vacuum boundaric 
However, it yields a non-diagonal matrix for the implic 
solution of the electric field, which admits an unphysic 
even-odd mode in the electric field. This mode becom 
significant for op At > 10, seriously limiting the range 
allowed electron densities. 

In Scheme 2, a staggered mesh is used, with density at 
temperature defined at cell centers, while momentm 
velocity, and electric field are defined at cell boundaric 
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This algorithm yields a diagonal field solver, eliminating the 
even-odd mode in the electric field; but tests have shown 
that it gives poor results at fluid-vacuum boundaries. 

Finally, in Scheme 3, density, momentum, and tem- 
perature are defined at cell centers, while velocity and 
electric field are defined at cell boundaries. This algorithm 
also yields a diagonal field solver, eliminating the even-odd 
mode in the electric field, and gives good results at fluid- 
vacuum boundaries. This Scheme 3 is now extended to 
include (a) momentum coupling between species due to 
collisions and (b) the effect of collisions on the implicit field 
solver. 

Density and momentum are transported using a flux 
corrected method, such as the method of van Leer (see 
Eqs. (17) of Ref. [ 11) or the algorithm described in 
Appendix B, which both use velocities at cell boundaries. 
A single transport step, such as advancing the cell-centered 
densities from their old values, ny, to their new values, nj, 
according to Eq. (1 ), is represented by the operator Y, 

“I = Y[np, u;+ ,,2]. 
Here, u,j+ ,,2, denotes the velocities at cell boundaries used 
to compute the fluxes in the transport algorithm. The super- 
script, t, implies using velocities at the new time level, but 
arbitrary time centering of the transport step may be 
achieved using a weighted average of velocities at the old 
and new time levels. 

Momentum and velocity are advanced by first trans- 
porting the momentum according to Eq. (2), excluding the 
source term, 

w,* = Unu),O, u;+ I,21 (8) 

from which intermediary velocities at cell boundaries are 
calculated, 

These velocities are then advanced by the source term 
contributions from Eq. (3). Including only the pressure and 
electric field contributions gives the collisionless velocity, 

~fot”;f20”““” = u,*+ 1,2 + At 1 - 
m(n'>j+ 112 

P’+,-P’ 
x J 

Ax ‘+Qp4E;+,/2 , 
1 

(10) m 

where (n’)j+ 1,2 = (nj, 1 +nf)/2, and P=nT+ Q denotes 
the pressure including the artificial viscosity term Q [ 11. 

a. Collisional Momentum Coupling between Species 

The collisionless equations, Eqs. (7t( 10) can be applied 
separately to each species, while the contribution of the 

collision forces, which depend on the collision frequencies 
vss, involve coupling between species. The algorithm 
representing this coupling and allowing large values of 
v,,, At, may be understood in terms of the following simple 
example. Consider a single moving fluid, coupled by friction 
to a stationary background. For the spatially uniform case, 
where the density is constant and no pressure gradient or 
electric forces occur, the momentum equation reduces to 

du 
z= -vcu2 

where v, is the collision frequency between the moving fluid 
and the stationary background. For constant collision 
frequency, the analytic solution is an exponential decay 
from the initial velocity, 24’ = u” exp( - v, t). In finite 
difference form, Eq. (11) may be written as 

u’ _ pdt = -v,At [(l-e)u’-“z+eu’] 
or 

u’ = 1+ (O- 1) v, At U,-dr 
l+Ov,At ’ (12) 

where 8 is a time centering parameter, 0 d 13 < 1, which 
controls the stability of the numerical solution for v, At $1. 
Three cases are considered: 

(i) For 0= 0, which corresponds to an explicit 
algorithm, Eq. ( 12) yields 

uf = (1 - v, At) z.Fdr, 

and for v, At >> 1, the solution is unstable as shown in 
Fig. la. 

(ii) For 0 = 4, which corresponds to a time-centered 
algorithm, Eq. (12) yields 

1 -vcAtP Ut-dt 
“=l+v,At/2 ’ 

t 
FIG. 1. Numerical solution of collisional slowing for Y, At 9 1. 

(a) Explicit algorithm, B = 0, gives an unstable solution. (b) Time-centered 
algorithm, 0 = $, gives an oscillatory solution. (c) Implicit algorithm, f3 = 1, 
gives stable decay. 
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and for v, At % 1, the solution is stable but oscillatory as 
shown in Fig. 1 b. Such oscillations would cause unphysical 
heating of the fluid. 

(iii) For 8 = 1, which corresponds to an implicit 
algorithm, Eq. (12) yields 

1 
ut= 1 +v,AtU 

l-d, 
’ 

and for v, At $1, the solution has a stable decay, Fig. lc, 
although at a slower rate than the analytic solution. 

Returning to the original problem, the velocity at the new 
time level is obtained by adding the collisional contribution 
from Eq. (3) to the collisionless velocity given by Eq. (lo), 

I 
‘s-j+ l/2 

collisionless 
= ‘*,j+ l/2 

1 mss’ v,Ju~ - u:,) 1 (13) 
s1 m, j+ 112 

Note that the collision forces in the right member of 
Eq. (13) are computed using the velocities at the new time 
level, r.4:, corresponding to the stable case 8 = 1 in the 
preceding example. This requires that the set of equations 
represented by Eq. (13) be solved simultaneously for all 
species present at the cell boundary j + l/2, to obtain the 
updated velocities from their collisionless values found in 
Eq. (lo), 

where 

A,. = 

l+ 1 AtFvls, 
X’f 1 

-Atzv,, .+. 

-Atm,,vZ1 
m2 

l+ c Atzv2s. ... 
s’ z 2 1 

L . . . . . . , . . A 
(15) 

is the collisional momentum coupling matrix at cell 
boundary j + l/2. The time step may now be completed by 
adding the source term contributions to the momenta, 

X (Au,j+ 112 + Aus.j- I/*), (16) 

where Au, j + 1,2 = u:, j + 1,2 - r.4: j+ 1,2. For the collisionless 
case, Au, j + 112 reduces to the pressure and electric field 
contributions defined in Eq. (23) of Ref. [ 11. 

For v, At 6 1, where v, is a typical collision frequency, 

Eq. (14) introduces only a weak collisional coupling 
between species, which tends to equate their velocities over 
many time steps. For v, At $ 1, there is strong collisional 
coupling between species. Some insight on the behavior of 
the algorithm in this case may be obtained by considering a 
single moving species, coupled by collisions to a stationary 
background. This limiting case approximates electrons 
colliding with much heavier and less mobile ions. Writing 
Eq. (14) for the mobile species, s = 1, and setting u2 = 0 for 
the stationary species yields 

(1 + v12 At) u; 

=u:+At -+-$(nT),+a,$E’] (17) 
1 1 

and, for v12 At 9 1, 

1 
‘N- 

*I Iv 
2 184 

v12 
-‘thl n2r+RPsE’. 1 (18) 

1 ml 

In Eq. (18), the electric field, velocity, and density gradient 
are evaluated at cell boundaries, and the fluid has been 
assumed isothermal, with thermal velocity t&hi = (T, /m 1 )‘12. 

Consider first the case of a uniform density. The density 
gradient term in Eq. (18) vanishes and the electric field 
term gives the correct expression of the mobility in the 
normalized units considered here, LIPql /v12ml. Thus, for 
large v12 At, the algorithm automatically gives Ohm’s law. 
Consider now the case of a non-uniform neutral fluid. The 
electric field term vanishes in this case and substituting ZL: 
from Eq. (18) into the continuity equation, Eq. (1) yields 

showing that the algorithm automatically reduces to the 
diffusion model in this limit. 

b. Implicit Electric Field Solution 

The implicit field solution derived in Ref. [ 1 ] must be 
modified to include the effect of collision forces. As in the 
collisionless case, the starting point is the integral form of 
the Poisson equation, written at the new time level, 

E:, l/2- Ef - l/2 = AX Qp 1 qsn:,j, 

and at the old time level, 
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Subtracting these equations and substituting nf = 
r$’ - f, + 1,2 + fj- ,,z, where fi + 1,2 denotes the fluxes used in 
the transport algorithm (see Appendix B), yields 

H:, 112 = E.:, 112 - E;+ ,,2 

+ Qp AX C qsf>,j+ l/2 = C'. (20) 

Here C’ is a constant, which may be time dependent, but is 
independent of position. This constant depends on the 
boundary conditions imposed on the system. For a floating 
potential, the boundary field is proportional to the surface 
charge on the wall. Consider the left boundary (x=0), 
where the electric field is E,,,. The change in Eli2 during one 
time step, proportional to the flux of charge into the left 
boundary, is Q,, Ax x (lfi,2. Writing Eq. (20) for j = 0 shows 
that C’ must vanish. If the potential across the system is 
imposed by an external circuit, then C’ is nonzero. The 
appendix of Ref. [ 1 ] considers this case. 

The field is solved by applying Newton’s iteration method 
to Eq. (20) writing the new field at iteration level q+ 1 as 
E’ % EY+ ’ = EY + 6E, where Eq is the new electric field at 
iteration level q and 6E is the correction. All quantities are 
at cell boundary j+ l/2 and the subscripts are omitted. 
Expanding HY + ’ linearly with respect to 6E about the 
previous iteration gives (for C’ = 0) 

(21) 

which can be solved for the correction 6E. The differentia- 
tion of Hq with respect to E in Eq. (21) must take into 
account the explicit dependence on E’ in Eq. (20) and the 
dependence of the flux at cell boundary j + l/2 on E through 
the velocities 

dHY 
-=1+!Z2,LlX~q*~, 
aE s 

where 

(22) 

(23) 

and E, = u, At/Ax. The derivative du,JdE, which takes into 
account the combined effects of the electric field and 
collisions, is found from Eqs. (10) and (14), 

du 
---& = [A,,,] - 1 

=Q2, Atg,, (24) 

where 

Combining Eqs. (22)-(24) to express aHq/aE, substituting 
into Eq. (21), and solving for 6E yields 

6E= - 
EY-E”+Qp AxC,q,f: 

1 + (Qp AtI cs qs gsm7ws’ 
(35) 

For the case of vanishing collision forces, g, = qs/ms, and 
Eq. (26) reduces to the collisionless results of Ref. Cl]. 

The field solver is implemented in the same way as for the 
collisionless case [l]. The set of Eqs. (7)-(lo), (14)-(16), 
(25), (26) is iterated. The fluxes fs and their derivatives 
(af/aE), depend on the transport algorithm used and the 
derivatives (af/&), are approximated by ( f/c)s as discussed 
in Ref. [I]. The iteration loop also includes the temperature 
equations derived in the next section. 

In the computation of the velocities, which require divi- 
sion by density in Eq. (9), vacuum regions corresponding to 
densities below a floor level, n,,,,, must be identified. A ceil 
boundary, j+ l/2, is in the fluid if nj, nj+ , > nfloo,; it is at a 
fluid-vacuum interface if nj > n,,,,, nj+ , < nnoo, or 
nj<nfloor, nj+ I >nfloor; and it is in a vacuum if n,, 
nj+ I < 4h. Velocities may be computed from Eq. (9) only 
for interior boundaries. At a fluid-vacuum interface, the 
velocity is set equal to the velocity at the adjacent interior 
boundary. In vacuum regions adjacent to system bound- 
aries, the velocities are also set equal to the value at the last 
non-vacuum cell boundary. This guarantees that fluid with 
density below the floor, which corresponds to the vacuum, 
will flow ahead of the fluid. In vacuum regions which are 
sandwiched between two fluid regions, the velocities are 
linearly interpolated to minimize the velocity gradient. In 
this case, pile-up of fluid below the floor level is possible, but 
is minimized. 

The transport algorithm requires that the time step, At, 
satisfy the Courant condition, u,,, At/Ax < 1, where u,,, 
denotes the maximum velocity of any species. This condi- 
tion implies other limitations on the time step, which can be 
derived from Eq. (17), where species 1 is the most mobile 
fluid component, generally electrons. 

A first condition is derived from the pressure term in 
the bracket in the right member of Eq. (17). Assuming 
an isothermal fluid, this term may be written as 
&~adw/~,. s’ mce the mesh size, Ax, is the shortest 
possible scale length, the maximum velocity which can be 
generated by this term is 

u At 4, 
Inax = 1+ VI2 At dx’ (27) 
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Substituting this value of urnax in the Courant condition, 
U max At/Ax < 1 yields 

(28) 

where 

STs,j+,:,=~ 3 At 5 $ Cv.A~.s - uJ’l:+ ,,2 (2 J 

For weak collisions, v,2 At < 1, Eq. (28) reduces to 
uthl At/Ax < 1, which is the familiar Courant condition on 
the sound speed. For strong collisions, vi2 At % 1, Eq. (28) 
reduces to (ufhl/v12) At/Ax* < 1. This guarantees that the 
Neumann stability condition for the diffusion model 
described by Eq. (19), is automatically satisfied. 

A second condition is derived from the electric field term 
in the right member of Eq. (17). The maximum velocity 
which can be built up from this term in a single time step is 

24 
max= 

AtQ, 
fiE. 

1 + v12 At m, 

Substituting this value of urnax in the Courant condition 
u,,, At/Ax < 1 yields 

Q,q,E At2 <1 
m,Ax 1+v12At ’ (29) 

For weak collisions, vi2 At 4 1, condition (29) may be writ- 
ten in the form or- At < 1, where wT= (Q,q, E/m, Ax)“* is 
the maximum trapping frequency corresponding to a par- 
ticle in an electric field of amplitude E and scale length Ax. 
This condition is familiar in implicit particle simulations 
and still applies in the present simulations, even though 
the fluid formulation adopted here is not capable of 
representing trapping oscillations. For strong collisions, 
v12 At $1, Eq. (29) yields (sZ,,q, E/m, v,~) At/Ax < 1. In this 
limit, the condition simply reduces to the Courant condition 
on the drift velocity, Udrift = Q,q, E/m, v12. 

III. ENERGY EQUATIONS 

Solution of the energy equations involves updating the 
temperatures with the source terms given by Eq. (6) and 
transporting the internal energy according to Eq. (5). To 
ensure a stable solution for large values of v,~,, At, the 
temperature source terms are applied in three substeps, 
corresponding to (i) the work of pressure forces and 
dissipation, (ii) temperature equilibration, and (iii) heat 
conduction. 

Starting from the old temperatures, T$, for each species 
s, partially updated temperatures, r$, are computed using 
the first two terms of Eq. (6), 

2 At P”! y-U!= T(O)---AL cu. 
S%J ‘3’ 3 Ax n”! I+ 112 -"j-1/2 s 1’ 

5.' 

are temperature increments at cell boundaries, which r 
averaged and added to the cell-centered temperatures. Nc 
that Eq. (30) can yield only positive values of the tel 
peratures T$, as long as the old temperatures, Tip,!, 2 
themselves positive and the velocities satisfy the Coura 
condition, u At/Ax < 1. The same values of the collisil 
frequencies at cell boundaries are used in Eq. (31) as in t 
momentum coupling matrix, Eq. (15). 

Temperature equilibration between species is done 
solving the set of equations, 

3 dT. --2= _ 
2 dt c Bssznst( T., - T,,) 

9’ 75s 
(3 

for each cell. Since equilibration between species can cau 
large temperature changes in a single time step, Eq. (3 
needs to be solved analytically over the time interval L 
This is done by the standard diagonalization method. T: 
quantities B,,, , which are defined in Section I, a 
symmetric, but the temperature coefficients B,,sn,r are n 
symmetric and the set of equations represented by Eq. (3 
has to be symmetrized prior to diagonalization. L 
T: = T,(n,)“*, then Eq. (32) yields 

or, in matrix form, 

-$ CT’] +$Y[T’] =0, 

where [T’] denotes a column vector of the temperatur 
and 

B,,n, + B,,n, + ... -B,22/n,n2 ... 
s= -B2, ,/&I B,,n, + B,,n, + ... ... 

. . . 1 
(3 

is symmetric. Diagonalization gives real eigenvalues, o 
and orthonormal eigenvectors [b],. Using these eige 
vectors to form the columns of a matrix with elements b, 
the equilibrated temperatures are computed, 

Tj2’ = k z,, b,,~b,~~,~ & Tj!’ exp [-&At]. (31 
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Heat conduction is computed in a third substep by 
solving the diffusion equation, 

separately for each species. The heat conduction coefficient, 
K, is proportional to the local density and depends on the 
temperature as discussed in Appendix A. This equation is 
solved by a simple implicit scheme, 

D,~Tj:‘,+Dp~1~‘+D~T13)~=i I 2niTj2J. (35) 

Here, Tj3’ is the partially updated temperature after heat 
conduction, 

D;+nj-D,? -0; 

and xj+ 112 cc (n, + nJ + ,)/2 denotes the heat conductivity at 
the cell boundaries. This scheme is stable for arbitrary time 
steps and requires only the solution of a tridiagonal system 
of equations. However, for a vacuum cell which is sur- 
rounded by two other vacuum cells, such as cells j = 5 or 6 
in Fig. 2a, all the terms of Eq. (35) vanish, causing the 
matrix to become singular. Such singularities could be 
removed by identifying fluid regions and solving the heat 
conduction problem separately within each region, with 
zero-flux conditions at the vacuum boundaries. An equiva- 
lent and simpler method is to reset 0,’ = 1, Dy = -2, for 
the values ofj where all the coefficients of Eq. (35) vanish, 
and to proceed with the tridiagonal solution over the entire 

4/3)lTo j 
12345676910; 

1234567691Oj 

FIG. 2. Heat conduction algorithm including a vacuum region. 
(a) Density showing vacuum cells. (b) Temperature resulting from reseting 
0,’ = 1 and D)' = -2 in vacuum cells surrounded by two other vacuum 
cells. (c) Effect of resetting the temperature at the boundary cells. 

system. At fluid-vacuum boundaries, such as cell j = 4 (or 
j=7) in Fig.2a, nj=nj+l = O (or nj = nj- i = 0). It f0llowS 
that icj+ 1,2 = 0 (or xj- 1,2 = 0) and substitution into Eq. (36) 
gives D,+ = OandDj0=-D,: (orD,-=OandD;=-DJ+). 
Substituting these values into Eq. (35) yields Tj3’ = T/3’, 
(or ?-I’) = Tjyl), so that the zero heat flux boundary 
conditions are automatically satisfied. Within the vacuum 
regions, Eq. (35) takes the form Tjy 1 - 2Tj3’ + Tj3’, = 0, 
giving a linear interpolation of the values of the temperature 
in these regions, as shown in Fig. 2b. 

After application of the temperature source terms, the 
energy is transported as was done in Ref. [l] for the colli- 
sionless case to obtain the updated temperature, 

Td- Y[n?T!3) a! 
J nf J J ’ If l/2 I. (37) 

Temperature may be computed from Eq. (37) for fluid cells, 
where the density is above the floor level, ni > nnoor. 
However, the temperature source contributions from 
Eq. (6) are inaccurate in cells which are adjacent to vacuum, 
such as j= 3 and j= 8 in Fig. 2b, because they involve 
velocities at vacuum boundaries, which are artificially set in 
the solution of the momentum equations. Therefore, tem- 
perature is computed from Eq. (37 j only in fluid cells, which 
are surrounded by two other fluid cells. In cells which are 
adjacent to vacuum, such as j = 3 and j= 8 in Fig. 2, the 
temperature is set equal to the adjacent interior cell, j= 2 
and j= 9 in Fig. 2c. 

The computation of the temperatures from Eqs. (30) 
(34), (35), (37) is included in the same iteration loop as the 
computations of the density, momentum, and electric field 
described in Section II. The velocities used to compute dis- 
sipation in Eq. (31) must be the velocities most recently 
updated from Eq. (14) to guarantee that dissipation scales 
as (v,,,))‘. This prevents unphysical heating at the interface 
between adjacent fluids. 

-IV. NUMERICAL TESTS 

A code implementing the algorithms of Sections II and 
III has been written and numerical tests involving colli- 
sional coupling between neutral fluids or plasmas are 
presented in this section. 

a. Ohmic Heating 

An electric field is applied to a uniform plasma consisting 
of electrons interacting with stationary ions by Coulomb 
collisions with collision frequency v,, = v,,( T,/To) p3/2, 
where To and v. are the initial temperature and collision 
frequency. An analytic solution of this problem is derived 
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first. The electron momentum and energy equations reduce 
to 

dT,=2m v .u2 
dt 3 =‘Ie’ (39) 

For sufliciently small electric fields, to be determined a 
posteriori, the acceleration term in the left member of 
Eq. (38) may be neglected, whence u, = -eE/m.vei. 
Substituting this expression into Eq. (39), gives 

where a = e2E 2/3m, v,, To. Solving this equation yields 

~~=u~(l-at)-~ 

T,=T,(l-at)-*, 
(40) 

where a0 = -eE/m,v,, is the initial drift velocity. From 
Eqs. (40), the runaway time is a - ’ and the solution is valid 
only for at < 1. The condition under which the acceleration 
term in Eq. (38) can be neglected may now be found. From 
the first of Eqs. (40), 

du e- 3au eE 
dt -ti’m, 

or 

z< vo( 1 - at) 3a . (41) 

A computer simulation was done with an electric field 
and initial collision frequency such that v0 to = 133. Here, 
to = m,u,/eE is the normalization time, corresponding to 
the time needed to accelerate a collisionless electron to 
the thermal velocity, u0 = ( To/m,)1’2. It follows that at, = 
(3v,t,)-’ = 2.5 x 10d3, giving a runaway time a-l = 4OOt, 
and an initial drift velocity u,, = u,,/v, to = 7.5 x 10P3v,,. The 
simulation was done with a density corresponding to 
apetO = lo3 and At = O.lt, (CL+,, At = 100). The result is 
shown in Fig. 3, where the solid line corresponds to the 
simulation and the points are analytical values from 
Eq. (40). The initial rise from zero to 7.5 x 10 ~ 3 corresponds 
to the initial rise of the applied electric field. The computa- 
tion was stopped at t,,, = loot,, well before runaway time 
(at,,, = 0.25) and at this time, condition (41) is satisfied, 

vo( 1 - atmax) %=2.4~ 3a 
UO 

= 1.33 x 104. 

I / I 

0.016 - 

FIG. 3. Drift velocity vs. time for the ohmic heating test with Coulomb 
collisions. Simulation results are shown in solid line and the points denote 
analytical results. 

b. Friction Tests 

In the present algorithms, the contact force at the inter- 
face between adjacent fluids is transmitted by friction forces 
between these fluids over their overlapping region. In the 
case of a short mean free path, this region can be small, 
extending over only a few cells. To examine the performance 
of the algorithms in this regime, the present tests consider a 
shock problem in which two neutral fluids consisting of 
identical species overlap over two cells at an initial density 
discontinuity of 10 to 1 at x = 50 Ax, corresponding to the 
center of the system. These simulations include friction, 
dissipation, and temperature equilibration, but exclude 
heat conduction. The collision frequency between fluids is 

v,,, = vo 2 JGmE, 

where n, is the upper density and To is the initial tem- 
perature of both fluids. This temperature dependence of the 
collision frequency corresponds to the hard sphere collision 
model. The transport scheme in these simulations used the 
“min-mod” limiter described in Appendix B. 

A first simulation was done with v. to = 5 x 103, where 
to = Ax/v, is used as normalization time, u. = ( To/mo)1’2 is 
the normalization velocity and m, = m, = m2. Thus, the 
mean free path is A,, = (vote)-’ Ax= 2 x lop4 Ax in the 
upper density region and Ai2 = 2 x lop3 dx in the lower 
density region, very small fractions of the mesh size, so that 
both fluids are strongly collisional. The time step is 
At =O.lt,. The total density, ntot =n, +n,, mean velocity, 
u = hul +n2u2Yntoty 
6: T, + 122 T2)l 

and mean temperature, T,, = 
ntot after 200 time steps are plotted in Fig. 4 

(solid lines). The total fluid displays the expected shock 
structure, with an expansion region from 25 to 50 Ax, a 
contact discontinuity at ~67 Ax, and a shock front at 
~90 Ax. These results are not distinguishable from the 
results of a simulation with a single fluid. This demonstrates 
that the two fluids push upon each other in their contact 
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(hsO1) t=20t, 

0 x/Ax 100 

FIG. 4. Simulation results for a shock wave problem initialized with a 
neutral fluid artificially divided into two identical fluids in contact at a 
density discontinuity of 10 to 1. The normalized collision frequency is 
vst, = 5 x 103. Densities, n, velocities, u, and temperatures, T, are shown 
at t=20f,. Values corresponding to the total fluid n,,, =n, +n,, 
$I, = (n,u, +~zUZhot~ and T,, = (n, T, + n, r,)/n,,, are shown in solid 
lines and values for the individual fluids are shown in broken lines. 

region without generating unphysical effects. The densities, 
velocities, and temperatures of the individual fluids are also 
plotted in Fig. 4 (broken lines). Note that the two fluids 
continue to meet at the contact discontinuity, that their 
velocities are very close in the contact region, and that there 
is no significant heating due to friction. Logarithmic plots of 
the densities, not shown here, indicate that there is mixing 
between the fluids over a significant region, but with partial 
densities that are several orders of magnitude below the 
total density. 

A second simulation was done with smaller collision fre- 
quencies corresponding to vote = 5, giving mean free paths 
AZ1 = 0.2 Ax and ,I ,2 = 2 Ax. The total density and the mean 
velocity and temperature, plotted in Fig. 5 do not show a 
significant difference compared to the strong collision case 
of Fig. 4, but there is now more mixing between the fluids. 
The individual velocities of the two fluids are also 
significantly different. This simulation was done with 
At =O.O25t, to satisfy the Courant condition on U, which 
becomes large in the low density region to the right of the 
system. 

c. Colliding Plasmas 

Consider two hot plasma slabs adjacent to one another. 
Initially their electron and ion densities have identical 
trapezoidal profiles as shown in Fig. 6, with a distance 
d = 110 Ax between centers. As in the previous example, 

(hs04) 

0 100 
x/Ax 

0 100 
x/Ax 

1.4L i ii 

XIAX 

FIG. 5. Simulation results for the same problem as in Fig. 4, but for a 
normalized collision frequency v0 C, = 5. 

time will be normalized to to = Ax/v,, where u. = (To/m,)‘/’ 
is the normalization velocity and To is the normalization 
temperature. These slabs could represent laser-heated 
exploding foils; assuming Ax = 1 pm, each foil would have 
a full width at half maximum of 20 pm and the distance 
between centers would be 110 pm. 

A preliminary simulation was done with a single neutral 
fluid (no electric field). The particle mass was set to 
m = 100 m, and the temperature to T = 1.1 To to correspond 
to the plasma case to be treated with multiple fluids. The 
time step for this simulation was At = 0.9,. At t = 240t,, the 
slabs have expanded into each other and the leading edges 
of their expansions have come into contact at the center of 
the system and stagnated. This results in recompression of 
the fluid on both sides of the center, and a high-temperature 
spike, T= 12.5T, at the center as shown in Fig. 7. At 
t = 600t,, more fluid from the expanding slabs moves 
inward and stagnates, resulting in symmetric outward 
moving shocks. At this time the central region also decom- 
presses and the temperature profile broadens, see Fig. 7. 

“k 
no 

I .o 

d=l IOAx 

1 \ 
I i 
I / 

I , I\,, 
0 100 200 x/AX 

FIG. 6. Density initialization of colliding plasma slabs. 
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(dfx2) 

x/Ax 
1=600t 0 

l----r- 

0 200 
x/Ax xlAx 

FIG. 7. Densities and temperatures at t = 240~~ and t = 600r, from a 
simulation of colliding plasma slabs using a single neutral fluid. 

In the multifluid simulations, the plasma slabs are 
initialized using four fluids, s = 1 (and 2) for the electrons 
(and ions) in the left slab and s = 3 (and 4) for the electrons 
(and ions) to the right. This allows the fluids to stream 
through each other when the plasma slabs collide after 
expanding. Initially the electron and ion temperatures are 
T, = To, T, = 0.1 To and the simulations include friction, dis- 
sipation, temperature equilibration, and heat conduction 
with a flux limiter set to 0.3 (see Appendix A for the defini- 
tion of the flux limiter). For the purpose of this numerical 
test, an artificial mass ratio mi/m, = 100 is chosen. The 
initial density is such that o,&, = 103; the time step is 
At = 0.2t, giving oP At = 200. The collisionality is specified 
by the dimensionless parameter 

q=3J;r72 
/(Ax) Optoj2 (A)‘, 

d ( 

where /1 is the Coulomb logarithm, Ax is chosen as 
normalization length, to = Ax/u, is the normalization time, 
and o. = ( To/mo)“2 is the normalization velocity. This 
parameter is approximately the ratio of the mean-free-path 
Aji = ( To/mi)1’2/vii, to the scale length d, r] z n,,/d. In terms 
of q, Eq. (A5) gives the collision frequencies for singly 
ionized ions as 

where all quantities are normalized. The collision 
frequencies as defined here do not take into account the 

(df02) t=24ot 0 t=240t 0 

0 200 
x/Ax 

t=600t o 

0.81 
I 
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XiAx 
k600t 0 

T 

~ 1 TO 

x/Ax 

0.2 t 
/ I 
0 200 

x/Ax 

FIG. 8. Densities and ion temperatures at t = 2401, and f = 6OOt, from 
a simulation of colliding plasma slabs using multiple fluids, with collision 
parameter 11 = 6.8 x lo-‘. Values corresponding to the total ion fluid, 
ntof = nz + n4 and T,, = (nz T, + n4 T,)/n,,, are shown in solid line and 
values for individual ion fluids are shown in broken line. 

relative streaming velocity between species. This velocity 
dependence is not important for our present purpose 
of testing the algorithms; however, simulations which 
include this dependence have been made for realistic 
parameters [ 63. 

The first simulation was done with q= 6.8 x 10P3. In con- 
trast to the single fluid case, the fluids at t = 240t, do not 
stagnate abruptly, but stream relative to each other as they 
come into contact at the center of the system. There is super- 
position of the fluids in the center of the system with some 
recompression, but the ion temperature spike is now only 
T,,= l.lT,, see Fig. 8. At time t =600t,, outward moving 
shocks have developed as in the single-fluid case. However, 
the fluid in the central region behind these shocks is cooler 
and more uniform. 

Two additional multi-fluid simulations were done with 
collision parameters, q, one order of magnitude lower and 

(df04) 

n 

n, 

0.1 

0 xlAx 200 0 x/Ax 200 

FIG. 9. Densities at t = 2401, and t = 6OOr, from a simulation of 
colliding plasma slabs using multiple fluids, with q = 6.8 x 10m4 corre- 
sponding to a higher collisionality than for the case of Fig. 8. 
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FIG. 10. Densities at 1=24Ot, and t=340t, from a simulation of 
colliding plasma slabs using multiple fluids, with q = 6.8 x 10d2 corre- 
sponding to a lower collisionality than for the case of Fig. 8. 

higher than in the case of Fig. 8. For q = 6.8 x 10h4 (higher 
collisionality), the density profiles at t = 240t, and at 
t = 6002,, shown in Fig. 9, are similar to the single fluid case, 
Fig. 7. For 9 = 6.8 x lop2 (lower collisionality), the density 
profiles at t = 240t, and at t = 340t, simply show a super- 
position of the slab expansions, see Fig. 10. 

d. Plasma Shocks 

In the following tests, two fluids are used to represent 
electrons and ions in plasma shock problems. These fluids 
are initialized such that the plasma is neutral, n, = nj and 
U, = ui, and with density and temperature discontinuities at 
x = 70 Ax in a system of length 100 Ax. A mass ratio 
mi/me= 200 is assumed, the plasma frequency at the 
reference density n, is oPO = lO’t;‘, t, = Ax/u, is the nor- 
malization time, u0 = ( T,,/m,)li2, and To is the normaliza- 
tion temperature. The ratio of specific heats is y = 5/3 for 
both electrons and ions. Except as noted, the time step for 
these simulations is At = 0.4t, and the artificial viscosity is 
set to K = 2. 

A simulation excluding collisional effects (friction, dis- 
sipation, temperature equilibration) and heat conduction is 
presented first, after which simulation results including 
these effects will be discussed. For the large value of m,to 
considered here, the plasma remains quasi-neutral and 
in the absence of collisions and heat conduction, the 
plasma shock (with singly ionized ions) should develop 
as for a neutral fluid, with density n =n,=ni, velocity 
U= ue= ui, and temperature T= T,+ Tj, obeying the 
Rankine-Hugoniot relations [7]. Denoting the upstream 
quantities, to the right of the discontinuity, with subscript 
1, and the downstream quantities with subscript 2, the 
initial values are set by choosing n, = O.ln,, Tel = 
Ti, = T,/2 = O.OST,, and n, = 0.335n,. The Rankine- 
Hugoniot relations for a steady shock then give the 
pressure ratio p2/p1 = 19 and T, = Te2 + Ti2 = 0.567T,,. 
The upstream and downstream sound speeds are 
cl = (YT,lm,) l’* = 0.029~~ and c2 = O.O69u,, from which 
uI = - 0.1140, and u2 = - O.O34u,. In the absence of colli- 

TABLE I 

Downstream Steady-State Values for Collisionless Plasma Shock 
Simulations with n, = 0.1, U, = -0.114, T,, = T,, = 0.05 

Theory Simulation 

n2 0.335 0.335 
u2 -0.034 -0.034 
T r2 0.112 0.122 

0.45 0.45 
1.55 x 1o-4 1.65 x 1O-4 

Note. All quantities are normalized. 

sions and heat conduction, the electrons move adiabatically 
across the shock [S], Tez/Tel = (n2/n,)2’3, from which, 
T,, = O.l12T, and Ti2 = T2 - Te2 = 0.45T,. These values 
are listed as the theoretical values in Table I. After a 
transient, during which the shock acquires a finite thickness 
and a perturbation travels downstream and disappears 
into the left boundary, a steady state is reached and, at 
t = 3200t,, the simulation values listed in Table I are 
obtained. The electron and ion temperature profiles are also 
plotted as broken lines in Fig. 11. There is good agreement 
between theory and simulation, except for the electron 
temperature which has an 8% error. This agreement was 
also found to depend on choosing an artificial viscosity 
coefficient K Z 2. 

With m,tO 9 1, the electric field is ambipolar, 

where cp is the electric potential. Since the electrons are 
adiabatic, T, may be related to n,, allowing this equation to 
be integrated across the shock, from which, 

5 A!- 
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where E0 = (47~2, T,) ‘I2 is the electric field normalization, 
see Section I. This value may be compared with the simula- 
tion value, ti2 - 4, = 1.65 x 10P4E,, dx. 

A simulation including collisional effects, but excluding 
heat conduction, is considered next. This would occur in the 
presence of a magnetic field parallel to the shock front, 
inhibiting heat conduction, and this case has been studied 
by Shafranov [9]. Since the plasma remains quasi-neutral, 
u, = ui, there is no dissipation and the new effects are limited 
to temperature equilibration between species, downstream 
from the shock front. This temperature equilibration does 
not affect the sum of the electron and ion temperatures, 
T2 = T,, + Tjz, which remains constant. Whence, the den- 
sity and velocity downstream from the shock are unchanged 
from the collisionless case and remain constant. Under these 
conditions, the electron energy equation, obtained from 
Eqs. (5) and (6), reduces to 

; u2 2 = - Bein2( T, - T;). 

Since m, = 200m, $ m,, B,, = 3(m,/mi) Cei, where Cei= 
Co/Tar2 and the constant C, which depends on the 
collisionality, may be computed from Eq. (A5). For 
ill@) to = 103, a collisionality specified by e’/( To Ax) = 
2~10~’ and n=5, Eq.(A5) gives C0=2.66x10P2. 
Defining T* = T2/2 = const and /3 = $B,;( T*) n,/u,, 
Eq. (42) reduces to 

=&= -fl[g]-312 [$ - 11. (43) 

This equation is solved, giving 

T,= T*W’ [@[$+8x], 

Ti=2T*- T,, (44) 

where T,, is the electron temperature immediately 
downstream of the shock, x is the distance downstream of 
the shock, and 

l+Ji @(<)=2&+~~31z-ln ~ . [ 1 1-a 
(45) 

These results are identical to Eq. (15) of Ref. [9]. 
The simulation is initialized as in the collisionless case 

and the electron and ion temperatures at t = 3200t, are 
plotted in solid lines in Fig. 11. Note that the temperatures 
equilibrate downstream from the shock and approach 
the equilibrium value T* = 0.285T,. The theoretical 
values from Eqs. (44) and (45), with Te2 =O.l12T, and 

T* = 0.285T,,, are plotted as points in Fig. 11, showing 
good agreement between theory and simulation. 

Finally, a simulation including both collisions and heat 
conduction is considered. Heat conduction affects the elec- 
trons directly, heating them upstream of the shock and 
causing their temperature to become continuous across the 
shock [S, 91. The ion temperature remains discontinuous 
across the shock, but is modified upstream of the shock by 
equilibration with the electrons. Downstream of the 
shock, there is also equilibration between electron and 
ion temperatures as in the preceding case, and the 
Rankine-Hugoniot relations are satisfied between region 1, 
far upstream of the shock, and region 2, far downstream of 
the shock. The simulation is initialized as in the preceding 
case, with upstream and downstream values of it, u, T,, and 
Ti given in Table I. The collisionality is specified by setting 
e 2 /(To dx) = 2 x lo-’ and /i = 5, and the thermal conduc- 
tivity is computed without flux limiting. A longer system, 
150 Ax, is used with the discontinuity at x = 120 Ax, to 
allow more space for heat conduction and temperature 
equilibration behind the shock. The electron and ion tem- 
perature profiles at t = 6000t, are plotted in Fig. 12. The 
values of n, u, and Ti immediately upstream and down- 
stream of the shock, denoted by subscripts 01 and 02, are 
listed in Table II. The electron temperature is indeed 
continuous across the shock and there are continuous 
changes in all quantities both upstream and downstream. 

The theory of this shock phenomenon was developed by 
Shafranov [9]. The electron and ion energy equations yield 

dT 
2= JK,’ g(T-T,)+~mj(u2--uf)] 

X T%+ 3Ceim,; (T,- Ti) , 
mj u 1 

(46) 

(PS 33) 

I’37 o.3m 

0.2 
T 
$ i 
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I 4 
0 xlAx 150 0 x/Ax 150 

FIG. 12. Electron and ion temperatures for a collisional plasma shock 
with the same collisional parameters as in Fig. 11, but including heat 
conduction. The solid lines correspond to the simulations and the points 
were computed from Shafranov’s theory [9]. 
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where J= nu = const. and T = T, + Ti. These equations 
apply both upstream and downstream of the shock discon- 
tinuity, the ion heat conduction has been neglected, and the 
electron heat conductivity is evaluated without flux limiting, 
qL (1 +$)C,,T, . “’ Mass and momentum conserva- 
tion determines the local velocity as a function of the sum of 
the temperatures T, 

.=;u, l+--$ [ 1 
X,1 g+fJ (47) 

where the positive sign applies to the upstream (supersonic) 
side and the negative sign applies to the downstream 
(subsonic) side. 

The jump conditions for the velocity and for the ion 
temperature across the shock discontinuity are 

~02 1 5 T, Tea 1 
-=-+-2- - In !E 
UOI 4 4WliliI 2m,u: u()&.q), - 1 

(48) 
UOl 

and 

&-,,- T,od+;“i(u& - u&) - T,, In 2 = 0. (49) 

Recall that the subscripts “01” and “02” denote conditions 
immediately upstream and downstream of the shock and 
that T,, is the electron temperature at the shock, which is 
continuous. Note that Eqs. (48) and (49) are similar to the 
classical shock equations, except for the logarithmic terms, 
which account for the acceleration and the work done on 
the fluid due to the ambipolar field across the shock. The 
shock is completely specified by the upstream values of n, , 
U, , and T,, = Tj, far ahead of the shock. The values far 
downstream, n,, u2, and T,, = Ti, are determined from the 
Rankine-Hugoniot relations, taking T = T, + Ti. If the elec- 
tron temperature T,, at the shock and the ion temperature 
Tiol immediately ahead of the shock were specified, 
Eqs. (47)-(49) would allow determination of the remaining 
quantities, z~i, uo2, and T,oz. These values could then be 
used as boundary values to solve the differential equations, 
Eqs. (46) in the upstream and downstream regions. 
However, these solutions must be continuous out to 
x = f co, where they must approach temperature equilibra- 
tion, and this occurs only for the proper choice of T,, and 
Tie, . Therefore the theoretical solution of the present shock 
problem is reached by a series of trials in which T,, and T,,, 
are varied until the desired behavior of T, and T, as a func- 
tion of x is obtained. Results of this theoretical solution are 

TABLE II 

Values Immediately Upstream and Downstream of Plasma Shock 
for Collisional Simulation (with Heat Conduction) with n, = 0.1, 

u, = -0.114, T,, = T,, =0.05 

Theory Simulation 

n01 0.111 0.11 
n02 0.326 0.33 
UOI -0.102 -0.105 
MO2 -0.035 -0.035 
T e0 0.264 0.265 
T 101 0.06 1 0.06 
T 102 0.319 0.315 

Note. All quantities are normalized. 

plotted as points in Fig. 12 and are listed in Table II. Both 
Fig. 12 and Table II show good agreement between simula- 
tion and theoretical results. 

V. CONCLUSION 

Fluid algorithms for one-dimensional multi-fluid simuia- 
tion of collisional plasmas have been presented and tested 
on a number of classical problems. Time-implicit computa- 
tions of the electric field and of collision forces have been 
incorporated in the algorithms, allowing simulations over a 
wide range of the time-scale parameters wP At and v, At. 
For wP At $1 (or v, At % 1) the algorithms reduce to the 
quasi-static (or diffusion) approximations, but space-charge 
(and dynamical effects) are accurately represented in fluid 
regions where CLQ, At 6 1 (and v, At 4 1). These algorithms 
are part of the development of hybrid simulations, which 
also include particles to represent plasma components 
requiring a kinetic treatment and hybrid simulations of 
diode closure, using the present fluid algorithms have been 
done. With fluids only, the methods presented here have 
also been applied to simulation of colliding plasmas 
resulting from exploding laser-heated CH foils [6]. These 
simulations were done with actual mass ratios (1836 and 
22032) and include the streaming velocities in the computa- 
tion of the collision frequencies. These simulations show 
that the plasma does not retain a fixed composition of 
carbon and hydrogen, as would occur in single-fluid 
codes. Such changes in composition modify the collisional 
damping of plasma waves and may have a significant effect 
on instability thresholds. 

APPENDIX A: COLLISION COEFFICIENTS 
AND HEAT CONDUCTIVITIES 

This appendix defines the collision frequencies and heat 
conductivities which enter in Eqs. (3) and (6). Two models, 
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rigid elastic spherical molecules and Coulomb interactions, 
which are used in the tests of Section IV. are considered. 

1. Collision Frequencies 

For rigid elastic spherical molecules, a simple geometrical 
argument gives 

v,,, = 7caf,,( vz*. ) “* n,, , (AlI 

where a,,, is the average diameter of the molecules, n,, is the 
density of species s’, and 

(v;*,)‘/2= S+$ II2 [ 1 * (AZ) 

is the “binary” thermal velocity. Equations (Al ) and (A2) 
are written in cgs units. When written in normalized units, 
these equations give 

v,,, = css.ns., (A3) 

where 

c,,s = vo 
T, T,s Ii2 [ 1 m+m, s 

and v. = ~a$n,l,. The collision parameters C,,. enter in 
the temperature equilibration term of Eq. (6). The colli- 
sional force also includes numerical constants OI,,~ of order 
unity, which can be found from Chapman-Enskog theory 
[lo], but these constants do not affect the algorithm and 
have been set to unity in the tests of Section IV. 

For Coulomb interactions, the Chapman-Enskog theory 
or the Braginskii theory give, in Gaussian cgs units, 

(A4) 

where A,,. is the Coulomb logarithm, mss. = 
m,m,./(m, + m,,), and T,,, = m,,.(u$). In normalized units, 
Eq. (A4) gives v,,, = Css,nscr where 

(A5) 

and r. = e’/( ToI,) is the normalized impact parameter for 
strong interaction ( z 90” deflection angle). The parameter 
r. defines the collisionality of the plasma. All quantities in 
Eq. (A5) are in normalized units. As in the case of rigid 
elastic spherical molecules, the constants u,, in the collision 
force have been set to unity in the tests of Section IV. In 
addition, the Coulomb logarithms /1,,, are held constant for 
these tests. 

2. Heat Conductivities 

The heat flux in a given species is -K, VT,, where K, is 
the heat conductivity of that species. It is convenient to 
express the heat resistivity, K~-‘, as a sum of contributions 
from binary collisions with all species, rc,,‘, plus a “vacuum 
contribution” ‘csil which limits the heat flux for low 
collision rates. 

K; ' = K,r;l + c K,,' . 

The collisional contributions are found by simple geometri- 
cal arguments, 

where yss, are numerical constants set to unity in the tests of 
Section IV. 

The contribution K~;' is obtained by stating that in the 
collisionless case, the heat flux is 

K,~ IVT, I =fsvthsns T,, 

where vths = ( Ts/m,)“2 is the thermal velocity of species s 
and f, is the flux-limiter coeflicient, whence 

(A7) 

The form of Eqs. (A6) and (A7) are unchanged when 
expressed in normalized units. 

APPENDIX B: TRANSPORT ALGORITHM 

In the examples given in Section IV, density, momentum, 
and energy have been transported on the Eulerian mesh 
using Roe’s “min-mod” limiter [ 111. This flux limiter uses 
only values at the “old” time, giving better convergence of 
the electric field solver than FCT limiters, which also 
depend on values at the “new” time, and has been found to 
give better results at vacuum boundaries than the method of 
Van Leer. Both FCT and Van Leer limiters were studied in 
Ref. cl]. 

A single transport step, denoted in Eq. (7) by the 
operator Y, 

is the result of adding and subtracting fluxes fj ,,2 andfj + 1,2 
from the adjacent cells, 
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Using Roe’s min-mod limiter, the fluxesfi, 1,2 are computed 
as 

h+ l/2 = IIn + it1 -&j+ l/2) nfl &j+ l/2 

if &j+1/220 

=[np+1-~(1+&,+1,2)n,*,,l&,+,,, 

if El + 1j2 < 0, 

where 

n,* = 0 if Cnp,, -n,D][np-ny-,]<O 

n,* = sign[np+ , -n;] 

x Min[ In;+, -n,pl, In:-+,I1 otherwise 

and Ej+ l/2 = At Ui+ I/~/AX. 
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